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ABSTRACT Expansions in Chebyshev polynomials are used
to study the linear stability of one-dimensional magnetohydro-
dynamic quasiequilibria, in the presence of finite resistivity and
viscosity. The method is modeled on the one used by Orszag in
accurate computation of solutions of the Orr-Sommerfeld equa-
tion. Two Reynolds-like numbers involving Alfven speeds, length
scales, kinematic viscosity, and magnetic diffusivity govern the
stability boundaries, which are determined by the geometric mean
of the two Reynolds-like numbers. Marginal stability curves, growth
rates versus Reynolds-like numbers, and growth rates versus par-
allel wave numbers are exhibited. A numerical result that appears
general is that instability has been found to be associated with in-
flection points in the current profile, though no general analytical
proof has emerged. It is possible that nonlinear subcritical three-
dimensional instabilities may exist, similar to those in Poiseuille
and Couette flow.

The linear stability of plane shear flows has been one of the
most intensively studied hydrodynamic problems from the time
of Rayleigh, since it was thought to hold clues to the nature of
turbulence [see, e.g., Lin (1) or Maslowe (2)]. Although the lin-
ear theory alone appears to be inadequate to predict the onset
of shear flow instabilities, it remains an important first step in
any discussion of the problem. We report here on an analogous
problem in incompressible magnetohydrodynamics (MHD). We
report numerical solutions of the quiescent-MHD analogue of
the Orr-Sommerfeld equation, using spectral methods devel-
oped by Orszag (3).
We begin with the incompressible MHD equations in a fa-

miliar dimensionless form:
aB 1
-= Vx(v x B) +- V2B, [1]
at S

av 1
- = -v.Vv + B-VB - Vp + - V~,
at M [2]

supplemented by the conditions that V v = 0 and V-B = 0. B
is the magnetic field measured in units of a mean magnetic field
magnitude ,. say. The velocity field is measured in units of the
mean Alfven speed CA -(4rp)-1/2, where p is the mass den-
sity, assumed uniform. The dimensionless pressure is p, and it
is determined by solving the Poisson equation that results from
taking the divergence of Eq. 2 and using V av/at = 0. The di-
mensionless numbers S and M have the structure of Reynolds
numbers. S CAL/q is the Lundquist number, where q is the
magnetic diffusivity and L is a macroscopic length scale; M-
CAL/v is a viscous analogue, where v is a kinematic viscosity.

Both 7q and v are assumed to be scalars. The regime of most
interest is that in which S and M are both substantially greater
than unity.
The boundary conditions are taken to be those appropriate

to a perfectly conducting, mechanically impenetrable wall
bounding a viscous, resistive magnetofluid: v = 0, n' - B = 0,
and ni X (V X B) = 0, where n is the unit normal at the wall.
We study the linear stability of the quasiequilibrium B(°) =

(Bo(y),0,0) and v(°) = (0,0,0) between parallel, plane infinite
boundaries at y = 1 and y =-1. The current density is in the
z direction only: jo = -DBO, where D d/dy. The configu-
ration described is not a true equilibrium, and the magnetic
field will resistively decay according to Bo(y,t) = exp(S-'tV2)'
Bo(y,0). The temporal variation will be assumed to be slow enough
to be negligible: Bo(y,t) Bo(y,0) = Bo(y). This implies that our
stability boundaries will not be accurate in regions of small S;
there is in this feature a conceptual difference from the already
much-studied (4-6) problem of a mean flow parallel to a uni-
form magnetic field with no current, which is a true equilib-
rium, and from Hartmann flow (6).
A linear expansion B = B(°) + B(l), v = v(l), is assumed, with

products of v(1) and B(1) being discarded everywhere in the
equations of motion. Manipulating the components of the re-
sulting linear equations, we may prove a Squire's theorem (1),
which implies that for the location of the most unstable modes
it suffices to consider the two-dimensional case: a/az may be
set equal to zero throughout. All variations with the parallel
coordinate x and the time t-are assumed to be contained in a
factor exp(iax - iwt), with a an arbitrary, real, parallel wave
number and (0 = Cr + iwi a complex eigenvalue. Dahlburg and
Montgomery (7) have given the eigenvalue equations in the form
used here:

(D2 - a2)2v = -iwjM(D2 - a2)v

- iaMBo(D2-a_2)b + iaM(D2Bo)b [3]
and

(D2 _ a2 + iwS)b = -iaSBov. [4]
Here b and v are the y components of B(') and v(l) and depend
only upon y. The boundary conditions become v = 0, Dv = 0,
and b = 0 at y = 1 and y = -1.

Eqs. 3 and 4 are the magnetostatic analogue of the Orr-Som-
merfeld equation, which in the same notation (1-3) is (D2 -

a =)'v- iaR[(Uo - w/a)(D2 - a2)v - (D2Uo)V], where UO(y)
is a shear flow velocity profile in the x direction, R is the Rey-
nolds number, and the boundary conditions are that v = 0, Dv
= 0 at y = + 1.

Abbreviation: MHD, magnetohydrodynamics.
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Eqs. 3 and 4 are quite similar to eigenvalue problems arising
in connection with confinement of thermonuclear plasmas. The
literature on "tearing modes" is extensive, and we may cite the
central papers of Furth et al. (8, 9), of Wesson (10), of Coppi
et al. (11), and of Dibiase and Killeen (12). Concern has fre-
quently been with the nonviscous (M = oo) case, which lowers
the order of the differential equations. Viscous results from a
linear initial-value computation have been reported by Dibiase
and Killeen (12) for the compressible case, and, to the extent
that the results can be compared, ours do not appear to disagree
with theirs. Because for plasmas of interest to date, the cal-
culated viscosity coefficients give estimates of v at as great as
those for 'i [see, e.g., Braginskii (13)], it seems desirable to re-
tain viscous effects even at the price of raising the order of the
eigenvalue problem to the point where results can be extracted
only numerically.

Analytical information is difficult to extract even for the sim-
pler Orr-Sommerfeld equation [e.g., Maslowe (2) or Reid (14)]
and numerical solution is indicated here. We use a spectral
technique closely patterned on the method used by Orszag (3)
to calculate critical Reynolds numbers for Poiseuille flow to six-
figure accuracy. It is to be expected that spectral methods will
find further applications in plasma physics beyond the imme-
diate ones.
The mean magnetic field Bo(y) and the perturbation quan-

tities v and b are expanded in truncated Chebyshev series
N

Bo(y) = I B,, T,,(y)
n =O

N

v(y) = E ,n Tn(Y) [5]
n=O
N

b(y) = E bn Tn(Y),
n=O

where Tn(y) is the nth Chebyshev polynomial of the first kind,
and Bn, in, and bn are the respective expansion coefficients.
The equations satisfied by the (unknown) expansion coeffi-

cients are obtained by substituting the N -> oo expansions of
Eq. 5 into Eqs. 3 and 4, each of which produces a countably
infinite number of equations in the expansion coefficients for
n = 0, 1, 2, ..., when the orthogonality and recursion relations
(3) are used. We then set all coefficients beyond n = N to zero
and use the n = 0 to n = N - 4 equations from Eq. 3, the n
- 0 to N - 2 equations from Eq. 4, and the boundary con-
ditions Xn=O fn =0, °(- 1 0 n=,_n Vn = 0,

$n= 1 (- 1)'n2 n = 0, ;nT=o bn = 0, and Xn=o (- 1)" bn = 0. This
method of truncation is called the "tau approximation" after
Lanczos (15); Gottlieb and Orszag (16) give a general discussion
of the use of the tau method in the Chebyshev case.

This spectral discretization process yields a generalized ei-
genvalue problem that can be written as Ax = wBx, where the
vector x = (i0, t1, .. . VN, bo, bi, ... bN), and A and B are non-
symmetric (2N + 2) by (2N + 2) square matrices.

As is customary for this type of stability problem, either global
or local methods are used to determine the eigenvalues. The
global method is based on the QR algorithm [Wilkinson (17),
Gary and Helgason (18)] and produces a full spectrum of ei-
genvalues. It is employed when no good guess for the least sta-
ble (or most unstable) eigenvalue is available. The local method
employs inverse Rayleigh iteration (17) and converges to the
eigenvalue (and its associated eigenfunction) closest to the ini-
tial guess for the eigenvalue. The global method may be used
to identify the eigenvalue with the largest imaginary part, and

the local method is useful when making a series of computa-
tions in which either the wavenumber or the Reynolds numbers
are slowly varied.

For functions Bo(y) that are antisymmetric about y = 0, it is
readily inferred from Eqs. 3 and 4 that v and b are of opposite
parity when reflected about y = 0. We have confined attention
to the case Bo(y) = -Bo(-y) with an associated current distri-
butionjo = -DBo, which has even parity about y = 0: the clas-
sic "sheet pinch" configuration. This configuration [indeed, any
Bo(y) profile] can be rigorously proved to be stable in the ideal
limit (M = 00, S = 00); any instabilities must result from finite
values of S or M or (in our case) both.
We have solved for the several eigenfunctions corresponding

to the largest values of wi for four different antisymmetric pro-
files Bo(y):

B'(y) y - y3/3

BU1(y) tan-lyy _ yy(y2 + 1)-'

Bo"(y) y - /21

BIV(y) a sinh-lyy - ŷy(y2 + 1)-1/2.

['I]

Two numerical results have characterized all runs per-
formed, and, though we have been unable to prove either one
analytically, we suspect they are generally true: (i) as S or M is
raised a first unstable eigenvalue always appears (wi > 0) at fi-
nite values of S and M with wr = 0; and (ii) a necessary con-
dition that instabilities appear is that the current profileJo shall
have an inflection point between y = -1 and y = + 1. Steep
current gradients alone seem insufficient to produce instability.
For example, Bt"(y), which has a large maximum current gra-
dient of 20 near the walls, was found to be stable up to M -
104, S = 104 (for a = 1), whereas profiles such as BW, which
did contain inflection points, would characteristically be un-
stable for S and M no greater than a few tens, with considerably
smaller current gradients involved.

Particularly extensive investigations were carried out for the
profile B`(y) for various values of a, S, M, and the "stretching
parameter" y. Fig. 1 is a plot of BU(y) and its associated current
profile j"'(y) =-DBU" as a function of y for y = 10. This case
will be used to illustrate the results in Figs. 2-9.

Fig. 2 shows typical eigenfunctions, stable and unstable,
computed from the B'I of Fig. 1. Fig. 2A applies to S = M =
10, for the least-damped eigenvalue wi = -0.1695. For this
case, Wr = 0, a = 1.0, b = ibi is purely imaginary, and v = Vr
is purely real. This last property always applies to the eigen-
function with the greatest wi. Fig. 2B shows bi, Vr for an ei-
genfunction immediately above the instability threshold, with

1.4

A -1

5

lo

1.0
y

FIG. 1. Bo = Bg(y) and its associated current profile jo = -DB
for v = 10.
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1.0 0.5 0 0.5 1.0

0.5 bi FIG. 3. Highly damped complex eigenfunctions forM = S = 20.

0 S = M = 20, oi = 0.06940, a = 1.o, w, = 0. Fig. 2C showswbi,r Well above the threshold, with S = M = 1,000, a = 1.0,
-0.5 Ur/ o = 0.19687, and (or = 0. Fig. 2D shows the case S = 10, M

= 105, with a = 1.0, wi = 0.4397, and (Or = 0. Fig. 2E shows
-1.0 the case S = 105, M = 10, wi = 0.002537, a = 1.0, (Or = 0 and

illustrates the (perhaps unsurprising) result that viscosity is bet-
1.0 -0.5 0 0.5 1.0 ter at suppressing unstable growth than resistivity.

Y The damped modes have, in general, both wi and 0r finite.
c}'C Typical eigenfunctions for a highly damped mode for B" are

1.0 Hoshown in Fig. 3 ((Or = -0.40492, wi = -6.01303, S = M =
/5 1/ X \20, a = 1.0).

At the stability threshold ( = 0, the scaling v' vM'12, b'
/ I -bS-112 reduces Eqs. 3 and 4 to a pair of equations for v' and

b' that depend upon S and M only in the combination (SM)1"2
-0.5 \ / _ (and, of course, upon a). The neutral stability curve in the SM

plane, across which wi becomes positive for some a, is therefore
-1.0 a hyperbola, approximately SM = 231.9. The computed loca-

I tion of this hyperbola (for B" with y = 10) is shown in Fig. 4.
-1.0 -0.5 0 0.5 1.0 The relatively low values of the critical Reynolds numbers (two

Y orders of magnitude or more below the corresponding hydro-
''|D dynamic ones for shear flows) are perhaps the most significant

1.0 feature of this graph. It is also interesting that for low enough
/i I \ \values of either Reynolds number, stability will always result

0.5 by / \ \ for any fixed value of the other, but because SM increases with

0
/ /\<temperature, according to kinetic theory estimates (13), at high

enough temperatures, we may always expect to be on the un-

-0.5 stable side of the boundary;

-1.0 \/I
- 1.0 -0.5 0 0.5 1.0 100 . _

y

-1.0 J 2 | \ Unstable80

~60

-1.0 -0.5 0 0.5 1.0
Y ~~~Stabe~

FIG. 2. (A) Eigenfunctions b ibi,u=v, for the least-damped ei- 0
genvalues forM = 10, S = 10. (B) Eigenfunctions b = ibi, v = vr slightly 0 20 40 60 80 100
above the instability threshold: M = 20, S = 20. (C) Unstable eigen- SC
functions b = ibi, v = urforS = M = 1,000. (D) Unstable eigenfunctions
b = ibi, v = Ur for S = 10, M = 105. (E) Unstable eigenfunctions b = ibi, FIG. 4. Locus of critical Reynolds-like numbers S = S,,M = MC in
v = vforS = 105, M = 10. the MS plane, as determined by computation.
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FIG. 5. The neutral stability curve w = 0 in the a, S plane forM =
1, 10, and 1,000 for B'I and y = 10.
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FIG. 7. Growth rate wi vs. M for fixed S = 10, 100, and 1,000, a =
1.0, y = 10 on Bo

To make a comparison with traditional (1) hydrodynamic plots,
Fig. 5 exhibits a set of marginal stability curves: wt = 0 in the
a, S plane for fixed M for BU and 'y = 10. The first unsta-
ble a (which, for the reasons previously noted, must be the
same for all such curves) is a = a, = 1.184 ± 0.005. We have
generated the same curves (not shown) in the a, M plane for
fixed S.

Fig. 6A shows a growth rate (wi vs. S) curve for M = 10. Fig.
6B shows a logarithmic plot for large values of S, illustrating the
S-315 regime identified analytically by Furth et al. (8). Fig. 7
shows the somewhat different behavior of wi vs. M for fixed S.
Fig. 8 Upper shows a contour plot of two periods of the mag-

0.5 A

0.4 M 1oo X
0.3 X 0 '
0.2

0.1 M1

0

-0.1

-0.2 - / _

-0.3 /
-0.4 / l|
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0.1 T-M1oo B
i \ \ = ~~~~~~~~~1,000
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0.001 1
102 103 104 105

S

FIG. 6. (A) Growth rate coi vs. S for a = 1.0 (onBU with y = 10), M
= 10, 100, and 1,000. (B) Growth rate cHI vs. S for fixed M, a = 1.0,
BU, with y = 10.

netic field lines B'0) + B"1' for the BU equilibrium plus a 20%
admixture of the eigenfunction shown in Fig. 2B. Fig. 8 Lower
shows the streamlines of the velocity field for the same eigen-
function. Fig. 9 shows the growth rate c,)i vs. a for several val-
ues of S and M.

The results presented have all been computational and are
not the result of an asymptotic "tearing layer" analysis. The
marginal stability curves such as Fig. 5 or the stability hyper-
bola of Fig. 4 could only have been obtained numerically. De-
spite these results, we are well aware of other potentially im-

FIG. 8. (Upper) Contour plot of magnetic field lines for a typical un-
stable eigenfunction near the threshold (S = M = 20). Field lines are
equilibrium plus 20% admixture of eigenfunction. (Lower) Velocity
streamlines corresponding to eigenfunction represented in Upper.
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